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Abstract
A quantum particle in a periodical lattice under the effect of an external
homogeneous field shows a periodical motion, usually a named Bloch oscillator,
for long times. When we introduce a weak and slowly varying inhomogeneous
field then the dynamics of the quantum particle still exhibits a periodical motion
but with a different period and a different width of the interval of oscillation. In
this paper we obtain a formula for the dominant terms of the perturbed period
and width, then we apply our result to the study of the effect of Casimir–Polder
forces to a vertical Bose–Einstein condensate trapped in an optical lattice.

PACS numbers: 03.65.−w, 03.75.Lm
Mathematics Subject Classification: 81Q15, 81Vxx

1. Introduction

In this paper, we consider the motion of a quantum particle in a one-dimensional periodical
lattice under the effect of an external force. It is a well-known fact that when the external force
is homogeneous then the quantum particle remains confined in a finite region for a long time
and finally it escapes to infinity because of the tunneling effect. In particular, such a confined
motion is a periodical motion, usually named Bloch oscillators (or also Bloch oscillations),
with period [3]

TB = 2πh̄

Fd
(1)

where F > 0 is the strength of the external homogeneous force and where d is the period
of the one-dimensional periodical lattice. In particular, when the quantum particle is initially
prepared on one energy band (with amplitude δ) of the lattice, usually the first one, with a
given mean quasi-momentum and a quasi-momentum spread much smaller than the width of
the Brillouin zone then the region where the quantum particle remains confined for long times
has a width given by (see, e.g., [23] or also the reviews in [5, 15, 20])

L = δ

F
. (2)
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Here, we explore the effect on such a periodical motion of a weak inhomogeneous force,
as a perturbation of the homogeneous one. If, as we assume in this paper, the inhomogeneous
external force is a slowly varying function along the support of the wave-packet then we
expect to still observe a periodical motion for the quantum particle for long times with a
slightly different period T ε

B and width Lε of the interval of oscillation. In particular, if we
denote by −Fx the potential of an external homogeneous field and by ε(x)x the potential of
the external inhomogeneous field such that |ε(x)| � F , then in this paper we prove that the
shift length and the shift period depend on the mean value of the external inhomogeneous field
on the unperturbed interval of oscillation. More precisely, we have that:

Lε = L − 1

F

∫ L

0
ε(x) dx + O

(
ε2δ

F 3

)
(3)

and

T ε
B = TB − 2h̄

F 2

∫ π/d

0
ε

(
E1(k) − Eb

1

F

)
dk + O

(
h̄ε2

dF 3

)
(4)

where we assume that the state is initially prepared in the first energy band, E1(k) is the
first energy band function and Eb

1 is the bottom of the first energy band. Here, for the sake
of simplicity, we have fixed at x = 0 the first endpoint of the interval [0, L] of oscillation
for the unperturbed particle. We remark that when ε(x) is simply a constant function, i.e.
ε(x) ≡ ε̄ for some ε̄, then (3) and (4) agree with the obvious fact that Lε = δ/(F + ε̄) and
T ε

B = 2πh̄/d(F + ε̄). Higher order terms can be computed starting from the exact result (27)
as done for the shift length in section 3.2.

We must underline that our results hold provided that the following two conditions are
satisfied:

(a) the state is initially prepared on one energy band with a quasi-momentum spread much
smaller than the Brillouin zone;

(b) the external inhomogeneous field is almost constant on the support of the wave-packet.

Hence, limit cases, as pure Bloch states or pure Wannier states, seem to be excluded
because of the uncertainty principle. Indeed, pure Bloch states are sharply localized with
respect to the quasi-momentum variable (in fact, they are represented by means of a Dirac
delta function), but they are fully delocalized with respect to a spatial variable and so they
do not meet condition (b); in contrast, Wannier states are sharply localized on one single
lattice cell but they are fully delocalized with respect to the quasi-momentum variable (in fact,
they are represented by means of a constant function on the Brillouin zone) and so they do
not meet condition (a). However, it is possible to prepare suitable wave packets that meet
both conditions (a) and (b); that is they are quite localized with respect to both spatial and
quasi-momentum variables and they exhibit a soliton-like motion where the centroid of the
wave packet periodically moves along the interval of oscillation with width L maintaining a
well-localized shape.

As an application of equations (3) and (4) we consider the recent experiment proposed
by Carusotto et al [7] where they explore the effect of Casimir–Polder forces on atomic Bloch
oscillators (in this case the external homogeneous force is the gravitational force and the lattice
is aligned along the vertical direction). In fact, Bose–Einstein condensates are an ideal tool for
the study of quantum effects connected with the dynamics of a single particle in a periodical
lattice. Indeed, the condensate is represented by means of only one wavefunction since all the
neutral atoms occupy the same quantum state. The periodical lattice potential is then realized
by means of an optical lattice which does not have defects and its strength and period can be
easily tuned (for experimental observations of Bloch oscillators in optical lattices see, e.g.,
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the papers [9, 16, 21]). In such a periodic potential the atomic cloud is naturally described
by means of a Bloch oscillator and the condensate wavefunction can be considered a sharply
localized wavefunction in the quasi-momentum space (see, e.g., section 5.2.3 in [8]).

In particular, in the paper [7] they consider a BEC with 2 × 104 40K atoms prepared in an
optical lattice with wavelength λ = 873 nm, that is the lattice period is d = λ/2 = 436.5 nm,
and a vertical extension L of 4 µm, that is around eight lattice cells. In their paper they consider
a model where the external Casimir–Polder force, due to a sapphire surface at distance D from
the BEC, where D goes from 4 µm to 10 µm, is assumed, at first, spatially homogeneous along
the atomic cloud. Then they numerically investigate the effect of the spatial inhomogeneity
of the Casimir–Polder force along the atomic cloud proving that the relative shift in the Bloch
oscillators period due to the Casimir–Polder force is actually different with respect to the
previous case. In this paper, we compute the relative shift by making use of formula (4) and
our result qualitatively agrees with [7]; in fact, the relative shift is different with respect to the
case of the homogeneity of the Casimir–Polder force and such a difference is similar to that
numerically obtained by [7].

The paper is organized as follows.
In section 2 we collect some fundamental results on Bloch oscillators, previously obtained

by Grecchi and Sacchetti [10–12]. In particular, section 2.1 is devoted to the study of
the motion of Bloch oscillators in the quasi-momentum representation (also called crystal
momentum representation), the acceleration theorem is stated in its classical version (10) and,
furthermore, in the version (12) where a new phase term (13) has been introduced by Grecchi
and Sacchetti [10]; section 2.2 is devoted to the computation of the centroid (17) and the
variance (19) of Bloch oscillators in the spatial variable; in section 2.3 different initial wave
packets are considered and an expression of an optimal wave packet (23) which translates in
space maintaining its shape is given. The proofs of some of these results are collected in the
appendix.

In section 3, we considered the case of Bloch oscillators in a slowly varying external field
in the general case, in section 3.1, and then in section 3.2, for wave packets sharply localized
in the quasi-momentum space. In particular, our main results (3) and (4) are obtained.

In section 4, we consider the model introduced by Carusotto et al [7] and we compute the
period and length shift due to the Casimir–Polder force by means of our theoretical results (3)
and (4).

2. Bloch oscillators

The wave packet ψ(x, t) of a quantum particle in a one-dimensional periodical lattice under
an external homogeneous force along the direction of the lattice satisfies the time-dependent
Schrödinger equation⎧⎨

⎩ih̄
∂

∂t
ψ = HF ψ, ψ = ψ(x, t) ∈ L2(R, dx)

ψ(x, 0) = ψ0(x)

(5)

where

HF = HBloch − Fx, HBloch = − h̄2

2m

∂2

∂x2
+ V (x).

In the usual setting of solid-state physics m is the effective mass of the quantum particle, F is
the constant strength of the external force along the direction x of the one dimensional crystal
and V (x) = V (x + d) is the crystal potential with period d. HBloch is the self-adjoint Bloch
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operator defined on the Hilbert space L2(R, dx) whose spectrum is absolutely continuous and
it is given by bands

σ(HBloch) = ∪∞
n=1

[
Eb

n,E
t
n

]
, Et

n � Eb
n+1 < Et

n+1.

We assume here that the wave packet at the initial time ψ0(x) satisfies the normalization
condition

∫ +∞
−∞ |ψ0(x)|2 dx = 1.

In fact, when the state is initially prepared on one band, e.g. the first one, then, because
of the periodicity of the crystal potential, we expect to observe that the dominant part of the
wave packet performs a periodic motion (Bloch oscillator) with period TB given by (1) and
this periodic motion occurs within an interval of width L given by (2), where δ = Et

1 − Eb
1 is

the width of the first energy band.
Since TB is the actual unit of time it is more convenient to rescale the time as

τ = F t

h̄

so that the Bloch period is given by

τB = 2π

d

and the time-dependent Schrödinger equation takes the form

iF
∂

∂τ
ψ = HF ψ, ψ = ψ(x, τ). (6)

2.1. Motion of the wave packet in the quasi-momentum representation

The quasi-momentum (also called crystal momentum) representation of the wave packet is
employed, which means that the electron wave packet ψ(x, τ) is expanded in Bloch functions

ψ(x, τ) =
∞∑

n=1

∫
B

an(k, τ )ϕn(k, x) dk, (7)

where ϕn are the Bloch functions, k is the quasi-momentum variable belonging to the Brillouin
zone B = [0, 2π/d). Since the Bloch functions ϕn are normalized in such a way∫ +∞

−∞
ϕ̄n(k, x)ϕm(k′, x) dx = δm

n δ(k − k′)

the functions a(k, τ ) = (an(k, τ ))∞n=1 representing the wave packet in the quasi-
momentum representation are periodic functions with respect to the quasi-momentum variable
k, an(k, τ ) = an(k + 2π/d, τ), and they are defined as

an(k, τ ) =
∫ +∞

−∞
ψ(x, τ)ϕ̄n(k, x) dx, n = 1, 2, . . . .

The normalization of the wave packet ψ(x, τ) implies that
∞∑

n=1

∫
B

|an(k, τ )|2 dk =
∫ +∞

−∞
|ψ(x, τ)|2 dx =

∫ +∞

−∞
|ψ0(x)|2 dx = 1

In such a representation equation (6) takes the form (see equation (6.1.8) in [5])[
En(k) − iF

∂

∂k
− iF

∂

∂τ

]
an(k, τ ) − F

∞∑

=1

Xn,
(k)a
(k, τ ) = 0 (8)
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with initial condition

a0
n(k) = an(k, 0) =

∫ +∞

−∞
ψ0(x)ϕ̄n(k, x) dx.

The band functions En(k) are periodic functions with period 2π/d, they are even functions,
i.e. En(−k) = En(k), such that

Eb
n =

{
En(0), n odd
En(π/d), n even

and Et
n =

{
En(π/d), n odd
En(0), n even.

The coupling terms Xn,
(k) are given by

X
,n(k) = Xn,
(k) = i
2π

d

∫ d

0
ūn(k, x)

∂u
(k, x)

∂k
dx

where

ϕn(k, x) = eikxun(k, x), un(k, x + d) = un(k, x). (9)

Remark 1. By means of a suitable gauge of the phase term of the Bloch functions ϕn (see,
e.g., [22]) the intra-band coupling term Xn,n(k) can be choosen to be a constant term; in
particular, in the case of symmetric periodic potential, it can be choosen to be exactly zero
(see, e.g., [2]).

Following Callaway [5] we obtain the motion of the centroid of the wave packet in the
quasi-momentum representation. Let 〈k〉τ be the expectation value of the quasi-momentum
variable k on the state a defined as

〈k〉τ = 〈a(k, τ )|k|a(k, τ )〉 =
∞∑

n=1

∫
B

k|an(k, τ )|2 dk.

Then

〈k〉τ = 〈k〉0 + τ (10)

where 〈k〉0 is the expectation value of the quasi-momentum variable in the initial state.
Equation (10) is often called the acceleration theorem.
As a comment to equation (10) Callaway (see [5], p 468) pointed out that: ‘One often

finds in the literature the alternative form dk
dτ

= 1 which must be understood as referring to
the centroid of the packet’. In fact, in many solid-state textbooks this result is usually applied
to a pure Bloch state where (see, e.g., [15], p 191): ‘an electron which stays in a given state k
will appear to change its properties in terms of the states classified in k at τ = 0 as if dk

dτ
= 1.

That is, an electron in a pure Bloch state at τ = 0 will at a later time τ be in a state having
the original k, but with all the other properties of the state originally at k − τ .’ According to
the criticism by Bouchard and Luban (see appendix 3 in [4]), if the initial state is not a pure
Bloch state then this last argument does not apply.

In order to overcome this flaw we state the following result which extends such an analysis
to any initial state. To this end, we consider the behavior of Bloch oscillators in the decoupled
band approximation obtained by neglecting the inter-band interaction and where equation (8)
takes the form[

En(k) − FXn,n(k) − iF
∂

∂k
− iF

∂

∂τ

]
an(k, τ ) = 0, n = 1, 2, . . . . (11)
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The solution an(k, τ ) of the decoupled band approximation (11) satisfying the initial condition
an(k, 0) = a0

n(k) is given by [11, 12]

an(k, τ ) = eiθn(k,τ )a0
n(k − τ) (12)

where

θn(k, τ ) = − 1

F

∫ k

k−τ

[En(q) − FXn,n(q)] dq (13)

is a phase factor.

Remark 2. From (12) it follows that the time behavior of Bloch oscillators in the quasi-
momentum representation is given by means of a uniform translation k → k − τ (as usually
expected) together with a change in phase. The term 1

F

∫ k

k−τ
En(q) dq of the phase factor is,

for what known by us, a completely new term and it plays a crucial role in order to understand
the dynamics of the wave packet ψ(x, τ). Keeping in mind (remark 1) that the intra-band
term Xn,n is a constant function then the term Xn,nτ in the phase factor is independent of k;
this term has been obtained by Zak and it is related to the fact that Wannier–Stark ladders are
translationally invariant: the position of the discrete levels (with respect to the band energy)
must be independent of the choice of the origin in the crystal cell [17, 18].

Remark 3. We point out that the tunneling effect between the bands is not considered in this
approximation because we neglect the coupling terms Xn,
 with n 
= 
; actually, this fact is
not really crucial since the tunneling time between bands is, typically, much larger than the
period of Bloch oscillators. For a complete treatment where the tunneling effect is considered
we refer to [10, 11].

2.2. Expectation value of the position operator

Going back to the position representation, from equations (7) and (12) it follows that the
solution of the time-dependent Schrödinger equation (6) has the dominant term given by

ψ(x, τ) =
∞∑

n=1

∫
B

a0
n(k − τ)eiθn(k,τ )ϕn(k, x) dk (14)

at least for times smaller than the tunneling time.
If the initial state ψ0(x) is a pure Bloch state prepared on one single band (e.g. the first

one), that is ψ0(x) = ϕ1(x, k0) for some k0, then the solution an(k, τ ) in (12) takes the form
an(k, τ ) = δ1

neiθn(k,τ )δ(k − τ − k0) and the wave packet takes the form of the Houston function
(see, e.g., equation (6.1.41) in [5])

ψ(x, τ) = ψ0(x, k0 + τ)eiθ1(k0+τ,τ ) = ϕ1(k0 + τ, x)e− i
F

∫ k0+τ

k0
E1(q) dq eiX1,1τ

as proved by Houston [13] and Wannier (see equation (45) in [20]). We emphasize that, in
such a case, the phase factor (13) does not play any particular role.

In contrast, if the initial state does not coincide with a pure Bloch state, the phase factor
(13) appearing in (12) plays a crucial role in order to obtain the dynamics of the wave packet
ψ(x, τ) in the position representation. Here, from (14), we give the expectation value and the
variance of the position operator for any initial state ψ0(x).

6
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Let

〈x〉τ = 〈ψ(x, τ)|x|ψ(x, τ)〉 =
∫ +∞

−∞
x|ψ(x, τ)|2 dx

be the expectation value of the position observable and let Sτ = 〈[x −〈x〉τ ]2〉τ be its variance.
Then, in the limit of a small external force and for times of the order of the Bloch period, the
dominant term of the expectation value and the dominant term of the variance of the position
operator are given by

〈x〉τ − 〈x〉0 =
+∞∑
n=1

1

F

∫
B

∣∣a0
n(k)

∣∣2
[En(k + τ) − En(k)] dk (15)

and, if a0 is a real-valued function, then

Sτ − S0 = −([〈x〉τ ]2 − [〈x〉0]2) +
1

F 2

∞∑
n=1

∫
B

[En(k + τ) − En(k)]2
∣∣a0

n(k)
∣∣2

dk. (16)

Remark 4. This result extends that obtained by Bouchard and Louban (see equation (16) in
[4]) for the special case of a state initially prepared on the first band, where they assumed that
the initial state a0

1 is independent of the quasi-momentum k and where the first band is given
by a cosine function.

Equation (15) can be also written as

〈x〉τ − 〈x〉0 = 1

F
[〈E(k + τ)〉0 − 〈E(k)〉0] (17)

where on the left-hand side the mean value has to be intended on the position variable while in
the right-hand side the mean value has to be intended in the quasi-momentum variable, i.e. ,

〈E(k)〉τ = 〈a(k, τ )|E(k)|a(k, τ )〉 =
+∞∑
n=1

∫
B

|an(k, τ )|2 En(k) dk.

In particular, it follows that

〈x〉τ+dτ − 〈x〉τ = 〈E(k + τ + dτ)〉0 − 〈E(k + τ)〉0

F
(18)

and

d〈x〉τ
dτ

= 1

F
〈E′(k + τ)〉0 and

d2〈x〉τ
dτ 2

= 1

F
〈E′′(k + τ)〉0

where ′ = ∂
∂k

denotes the derivative with respect to the quasi-momentum variable.
For what concerns the variance we remark that if a0 is a real-valued function then the

function ψ0 has the property of symmetry ψ0(−x) = ψ0(x); thus 〈x〉0 = 0 and equation (16)
can be written as

Sτ − S0 = 1

F 2
[〈[E(k + τ) − E(k)]2〉0 − [〈E(k + τ) − E(k)〉0]2] (19)

where

S0 =
∞∑

n=1

∫
B

∣∣∣∣∂a0
n(k)

∂k

∣∣∣∣
2

dk. (20)
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0

140d

0 2 /dπ
τ

Figure 1. We plot the function 〈x〉τ (full line), which represents the motion of the centroid of the
wave packet, and the standard deviation σ τ (dotted line) for a state initially prepared on a Wannier
state. In such a case we do not have the motion of the centroid. Hence, the Bloch oscillator
performs an actual breathing motion, that is the wave packet, initially localized on a single site
of the lattice, periodically enlarges and shrinks without moving its center. Here, for the sake
argument, we choose δ/F = 200d.

2.3. Periodic motion of the wave packet in the position representation: breathing motion
versus soliton-like shape

In order to better understand the motion of Bloch oscillators initially prepared on the first band
we compute the centroid 〈x〉τ and the standard deviation σ τ = √

Sτ of the wave packet for
different given initial states. Here, for the sake of definiteness, we assume that the first band
function is simply given by E1(k) = 1

2δ [1 − cos(kd)], where δ is the width of the first band
and F is chosen such that δ/F = 200d; again, d is the period of the crystal.

In the first case we consider a state that initially coincides with an exact Wannier state
where a0

1(k) = √
d/2π , that is the electron wave packet is initially localized on one site of

the lattice. In such a case the wave packet exhibits a symmetrical motion and the centroid
remains fixed; in contrast, its variance is given by Sτ = 1

2
δ2

F 2 sin2
(

τd
2

)
. Hence, the Bloch

oscillator performs an actual breathing motion, that is the wave packet, initially localized on
a single site of the lattice, periodically enlarges and shrinks without moving its center (see
figure 1). As a result, we expect to have no electronic current, according to the fact that there
is no conductance in full bands [19].

In contrast, in the case of a pure Bloch state we then have the opposite situation for what
concerns the motion of the centroid of the wave packet (see figure 2); that is the centroid of

8
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0

70d

200d

2 /dπ
τ

Figure 2. We plot the function 〈x〉τ (full line), which represents the motion of the centroid of the
wave packet, and the standard deviation σ τ (dots line) for a state initially prepared on a pure Bloch
state, that is the initial state is given by (21) with ρ = 0.01. In such a case the centroid of the wave
packet periodically moves in an interval of width δ/F = 200d. The variance is almost constant
but it is very large, that is the wave packet is practically localized in an interval with width of the
order of the width of the interval of oscillation. In fact in the limiting case of an exact pure Bloch
state, i.e. ρ = 0, then the wave packet is fully delocalized in space.

the wave packet performs a periodical motion within the interval of width δ/F , but the state
is largely delocalized within such an interval.

We now consider an optimal situation, where the state performs a full periodical motion
on an interval of width of order δ/F , as in the case of a pure Bloch state, but the shape remains
well localized. To this end, we consider that a state is initially localized in the quasi-momentum
variable around k0 = 0 according to the following distribution:

a0
1(k) = ce−k2/2ρ2

, c =
[√

πρerf

(
π

ρd

)]−1/2

(21)

for ρ > 0, and periodically arranged on the Brillouin zone. The parameter ρ will be chosen
later such that ρd � 1 in order to optimize the variance Sτ of the wave packet.

A simple calculation gives that

〈x〉τ − 〈x〉0 = δC1(dρ) sin2(τd/2),

where

C1(ξ) =
Re

[
erf

(
π
ξ

− 1
2 iξ

)]
erf

(
π
ξ

) e−ξ 2/4,

9
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and

Sτ = 1

2ρ2
C0(dρ) +

δ2

2F 2
sin2

(
τd

2

)
[1 − cos(τd)C2(dρ)] − δ2

F 2
C2

1(dρ) sin4(τd/2)

≈ 1

2ρ2
+

(ρd)2

8

δ2

F 2
sin2(τd) � 1

2ρ2
+

(ρd)2

8

δ2

F 2

in the limit of small ρd, where

C0(ξ) := 1 − 2
√

πe−π2/ξ 2

ξerf(π/ξ)

and

C2(ξ) :=
Re

[
erf

(
π
ξ

− iξ
)]

erf
(

π
ξ

) e−ξ 2
.

We recall that erf(x) ≈ 1 as x goes to +∞.
Hence, it is convenient to choose ρ = √

2F/δd in order to minimize Sτ :

Sτ � 2S0 = 1

ρ2
= δd

2F
.

With this choice of ρ = √
2F/δd then condition ρd � 1 is implied by d � δ

F
.

Therefore we can conclude that: if the parameters are such that

d � δ

F
(22)

then the motion of the optimal wave packet

a0
1(k) = 1

4
√

2πF/δd
e−4Fk2/δd (23)

is similar to that of a soliton (that is, roughly speaking, the wave packet translates in space
maintaining its initial shape) whose support is contained in an interval with width of the order√

δd/F . In particular, the centroid of the wave packet moves forward for a length

L = C1(dρ)
δ

F
=

[
1 − 1

2
(dρ)2 + · · ·

]
δ

F
≈ δ

F
− d (24)

maintaining a well-localized shape and then it goes back to the initial position (see figure 3).

3. Bloch oscillators in a slowly varying external field

3.1. Theoretical formula in the general framework

We now consider the case when the external field is no more constant, but it slowly depends
on the position; hence, its perturbed potential can be written as ε(x)x for some slowly varying
function ε(x). The time-dependent Schrödinger equation takes the form

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
+ V (x)ψ − [F + ε(x)] xψ

with the initial condition ψ0(x) = ψ(x, 0). In fact, ε(x) is a small and slowly varying
perturbation, that is |supx ε(x)| � |F | in the considered domain and ε(x) is assumed to
be almost constant on the support of the wave packet ψ(x, t). Under this condition we
heuristically expect that the motion of the wave packet ψ(x, t) is similar to the motion of the

10
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0

10d

200d

0 2 /dπ

τ

Figure 3. We plot the function 〈x〉τ (full line), which represents the motion of the centroid of the
wave packet, and the standard deviation σ τ (dotted line) for a state initially prepared on an optimal
wave packet (23). In such a case the centroid of the wave packet periodically moves in an interval
of width δ/F − d. The variance is almost constant and it is quite small, that is the wave packet is
well localized and it has a soliton-like motion.

unperturbed Bloch oscillator, i.e. it is still a periodic motion, with a period T ε
B depending on ε,

within an interval of the width Lε depending on ε. In order to compute this period and the width
of the interval of oscillation we split this interval in a sequence of points xi, i = 0, 1, 2, . . . , n,
such that xi+1 − xi = Lε

n
, n will be chosen large enough; we denote Fi = F + ε(xi) and ti the

instant when the centroid of the particle is at the position xi , that is 〈x〉ti = xi . For the sake of
definiteness we assume that t0 = 0, 〈x〉t0 = x0 = 0 and 〈x〉tn = Lε . Furthermore, we denote
by τ ε the rescaled time, depending on ε, such that τ ε

0 = t0 = 0 and

dτ ε
i = τ ε

i+1 − τ ε
i = Fi+1

h̄
(ti+1 − ti), i = 0, 1, 2, . . . , n. (25)

Since we have assumed that the external perturbed potential is almost constant on the
support of the wave packet then, for n large enough, from (18) we can write that

dxi := 〈x〉ti+1 − 〈x〉ti

= 1

Fi

[〈
E

(
k + dτ ε

i + τ ε
i

)〉0 − 〈
E

(
k + τ ε

i

)〉0]
= 1

Fi

〈
E′(k + τ ε

i

)〉0
dτ ε

i +
1

Fi

O
(
dτ ε

i
2)

11
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Thus, we obtain the following relations:

[F + ε(〈x〉τ ε

)]
dx

dτ ε
= 〈E′(k + τ ε)〉0 (26)

and ∫ Lε

0
[F + ε(x)] dx =

∫ τ ε
p

0
〈E′(k + τ ε)〉0 dτ ε. (27)

where τ ε
p is the (rescaled) time for which the centroid of the particle moves from the initial

position x0 = 0 to the endpoint x = Lε of the interval of oscillation. Hence, the period of
oscillation, which corresponds to the twice of τ ε

p , will depend on the mean value of the external
force ε(x) along the width of oscillation.

3.2. Period of oscillation for a well-localized wave packet

In order to apply this formula we consider, at first, the case of an initial wave packet ψ0 given
by a pure Bloch state prepared on the first band: that is a0

n(k) = δn
1δ(k). In such a case

〈E′(k + τ ε)〉0 = E′
1(τ

ε)

and the instant τ ε
p when the motion of the centroid inverts its velocity is given by τ ε

p = π
d

.
Hence, (27) takes the form∫ Lε

0
[F + ε(x)] dx =

∫ τ ε
p

0
E′

1(τ
ε) dτ ε = δ

where δ = Et
1 − Eb

1 is the width of the first band, Eb
1 = E1(0) and Et

1 = E1(π/d) are the
bottom and the top of the first band. If we set Lε = L + rε , where L = δ/F is the width of
the interval of oscillation of Bloch oscillators initially prepared on a pure Bloch state, then the
above equation becomes∫ L

0
F dx +

∫ L+rε

L

F dx +
∫ L+rε

0
ε(x) dx = δ. (28)

Thus, we have the following equation for rε :

Frε +
∫ L

0
ε(x) dx +

∫ L+rε

L

ε(x) dx = 0;
that is rε is the solution of the fixed point equation R(r) = r where

R(r) = − 1

F

[∫ L

0
ε(x) dx +

∫ L+r

L

ε(x) dx

]
.

The solution of such an equation is given by means of the iterative procedure rn+1 = R(rn)

where r0 = 0. So, at the first-order approximation

r1 = R(r0) = − 1

F

∫ L

0
ε(x) dx,

The second-order approximation yields - (3), indeed

r2 = R(r1) = − 1

F

∫ L

0
ε(x) dx − 1

F

∫ L+r1

L

ε(x) dx = − 1

F

∫ L

0
ε(x) dx + O

(
ε2δ

F 3

)
.

For what concerns the period T ε
B from (25) we can write

1

2
T ε

B =
∫ T ε

B/2

0
dt =

∫ π/d

0

h̄

F + ε(〈x〉τ ε
)

dτ ε

= h̄

∫ Lε

0

1

E′
1

[
E−1

1

(
Fx + ε(x)x + Eb

1

)] dx (29)

12
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since

dτ ε = F + ε(x)

E′
1

[
E−1

1

(
Fx + ε(x)x + Eb

1

)] dx.

On the other hand, it is also possible to directly compute the dominant term of T ε
B obtaining

that

1

2
T ε

B =
∫ π/d

0

h̄

F + ε(〈x〉τ ε
)

dτ ε

= h̄

F

π

d
− h̄

F 2

∫ π/d

0
ε(〈x〉τ ε

) dτ ε + O

(
h̄ε2

F 3d

)
(30)

since 1
1+x

= 1 − x + (x2) when |x| � 1. Hence,

T ε
B ≈ h̄

F

2π

d
− 2h̄

F

∫ Lε

0

ε(x)

E′
1

[
E−1

1

(
Fx + ε(x)x + Eb

1

)] dx

≈ h̄

F

2π

d
− 2h̄

F

∫ L

0

ε(x)

E′
1

[
E−1

1

(
Fx + Eb

1

)] dx

≈ TB − 2h̄

F 2

∫ π/d

0
ε

(
E1(k) − Eb

1

F

)
dk (31)

so obtaining (4).

Remark 5. We underline that when ε ≡ ε̄ is a constant term then the above results (28) and
(29) simply reduce to the well-known result:

Lε = δ

F + ε̄
and T ε

B = 2πh̄

d(F + ε̄)
.

We should underline that the above arguments hold provided that the external field ε(x)

slowly changes along the support of the wave packet. Unfortunately, pure Bloch states are
quasiperiodic functions with respect to the spatial variable and their support is not finite.
However, under condition (22) we can prepare the initial state in order to have an optimal
wave packet (23) which exhibits a soliton-type shape with a well-localized support. In such a
case if the external field is slowly varying in intervals of width of the order

√
Sτ ≈

√
δd
F

, then
the above procedure can be applied and from (26), (27) and (31) we obtain the width Lε of
oscillation and the period T ε

B where L is now given by (24).

4. Measurement of Casimir–Polder forces using Bloch oscillators

We now consider the effect of Casimir–Polder forces between quantum particles and the
dielectric surface as in the explicit model considered in [7]. The physical system they consider
consists of a sample of ultracold fermionic atoms trapped in a one-dimensional optical lattice
aligned along the vertical axis. In fact, the dynamics of Bose–Einstein condensed states is
described by means of nonlinear Gross–Pitaevskii equations. However, when the wave packet
is sharply localized and the strength of the nonlinear term of the Gross–Pitaevskii equation
is of the same order of the external field then it is expected that the time dynamics of the
full wave packet is not affected by the non linear term, up to a phase term (see, e.g., [6], see
also the analysis by [1]). Because of the constant gravity acceleration the atoms, initially
cooled in a trapping potential, start to perform Bloch oscillations in the periodical lattice
when the trapping potential is switched off. If a surface is close to the lattice then additional

13
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forces between the atoms and the surface occur and the Bloch oscillations will be affected.
In particular, the Bloch period and the length of the interval of oscillation will be affected;
hereafter, according to the notation introduced by [7], we will denote by �TB and �L the
shift period and the shift length.

Hence, Bloch oscillators realize a powerful sensor for the detection of surface forces.
In particular, in [7] they consider, as additional forces between the atoms and the surface,

the Casimir–Polder force FCP(x) described by means of the following equation for the energy
potential:

VCP(x) = −kBT α0

4x3

ε0 − 1

ε0 + 1
(32)

where α0 is the static atomic polarizability, ε0 is the static dielectric constant of the material
composing the surface (which is placed at x = 0, with the x-axis being oriented downwards).
The external homogeneous force F is simply given by mg where m is the mass of the particle
and g is the gravity acceleration. The interval of oscillation has length L = 4 µm, the distance
D from the surface to the center of the atomic cloud goes from 4 to 10 µm and the period d of
the lattice is equal to d = 1

2λ, where λ = 873 nm.
If we assume, at first, that the external Casimir–Polder force (32) acts on the atomic cloud

as an homogeneous force then the period shift is simply given by formula (4) in [7], that is
�TB

TB

≈ −FCP(D)

mg
= c

D4
(33)

where

c = 0.1728 µm4

for the specific case of 40K atoms and a sapphire surface with ε0 = 9.4 at temperature T =
300 K.

Actually, the same ratio also measures the shift in the length of the interval of oscillation:
�L

L
≈ c

D4
. (34)

Then, in [7] they also performed an accurate numerical analysis for the non-interacting
many fermions system taking fully into account the spatial inhomogeneity of the Casimir–
Polder force over the atomic cloud; the comparison between these two models is explained in
figure 3 by [7].

Here, we perform the same analysis by making use of our analytical formulae (3) and (4).
For the sake of argument we assume that the first energy band is given by E1(k) =

1
2δ[1 − cos(kd)]. In particular, ε(x) = VCP(x)/x (here we should recall that, for the sake of
simplicity, we have placed the surface at x = 0 and the endpoints of the interval of oscillation
are placed at x = D − 1

2L and x = D + 1
2L) and we obtain that

�L = − 1

F

∫ L

0
ε

(
D − 1

2
L + x

)
dx =

∫ L

0

1

3
c

(
D − 1

2
L + x

)−4

dx

= c
16

9

L(L2 + 12D2)

(4D2 − L2)3
.

For what concerns the period T ε
B we have that the shift period is given by

�TB = −2h̄

F

∫ L

0

ε
(
D − 1

2L + x
)

E′
1

[
E−1

1

(
Fx + Eb

1

)] dx

= − 2h̄

dF 2

∫ δ/F

0

ε
(
D − 1

2L + x
)

√
x
√

L − x
dx

14
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Figure 4. We plot the ratios �L/L (left) and �TB/TB (right) as a function of the distance D
between the middle of the lattice and the surface. The length L of the periodical lattice is L = 4 µm.
Dotted lines represent the case (33)–(34) when we assume that the external Casimir–Polder force
acts on the atomic cloud as a homogeneous force. Full lines represent the case (35) when we also
take into account the effect of the spatial inhomogeneity of the Casimir–Polder force on the atomic
cloud.

= TBc

3π

∫ L

0

1(
D − 1

2L + x
)4 √

x
√

L − x
dx

= TBc
16D(8D2 + 3L2)

3(4D2 − L2)7/2
.

Hence,

�L

L
= c

16

9

L2 + 12D2

(L2 − 4D2)3
and

�TB

TB

= c
16D(8D2 + 3L2)

3(4D2 − L2)7/2
. (35)

The results of such a calculation are shown in figure 4. In particular it appears that,
for what concerns the Bloch period shift, our theoretical result qualitativelly agrees with the
numerical one obtained in [7], that is when we take into account the effect of the spatial
inhomogeneity then the shift length and the shift period exhibit a more strong dependence on
the distance between the surface and the atomic cloud.
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Appendix

Here, we collect the proofs of the main results given in section 2 concerning Bloch oscillators.

A.1. Proof of equation (10)

The proof of the acceleration theorem in this form is quite simple. Indeed, let

�(k, τ) =
∞∑

n=1

|an(k, τ )|2,

then, keeping in mind that Xn,
 = X̄
,n, from equation (8) it follows that the function �

satisfies to the equation[
F

∂

∂k
+ F

∂

∂τ

]
� = 0

which has a solution of the type �(k, τ) = �(k − τ) where � is an arbitrary periodic function
of its argument satisfying the normalization condition∫

B
|�(k)|2 dk =

∞∑
n=1

∫
B

|an(k, τ )|2 dk = 1.

Hence,

〈k〉τ =
∞∑

n=1

∫
B

k|an(k, τ )|2 dk =
∫
B

k�(k − τ) dk

=
∫
B

[k + τ ]�(k) dk = 〈k〉0 + τ.

A.2. Proof of equation (12)

To this end, we set ξ = k − τ , then equation (11) takes the form[
En(k) − FXn,n(k) − iF

d

dk

]
an = 0, n = 1, 2, . . .

which has a solution

an = hn(ξ) exp

[
− i

F

∫ k

0
[En(q) − FXn,n(q)] dq

]

where hn(ξ) is an arbitrary function of its argument. In order to have a0
n at the time τ = 0,

that is at ξ = k, then

hn(ξ) = a0
n(ξ) exp

[
i

F

∫ ξ

0
[En(q) − FXn,n(q)] dq

]
obtaining (12) and (13).

A.3. Proof of equations (15) and (16)

Here, following [12] we make use of the acceleration theorem for the motion of wave packet
in the quasi-momentum representation in the form (12). In fact, a different proof, under some
technical assumptions on the external field, has also been given by [14].
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From equations (6) and (7), and from the acceleration theorem in the form (12), then
formally it follows that

Fxψ = −iF
∂ψ

∂τ
+

[
− h̄2

2m

∂2

∂x2
+ V

]
ψ

=
∞∑

n=1

∫
B

dn(k, τ )ϕn(k, x) dk

where

dn(k, τ ) = −iF
∂an(k, τ )

∂τ
+ En(k)an(k, τ )

=
[

iF
∂a0

n(k − τ)

∂k
+ (En(k) − En(k − τ)) a0

n(k − τ)

]
eiθn(k,τ ).

From this fact and since
∫ +∞
−∞ ϕ̄m(x, k′)ϕn(x, k) dx = δ(k − k′)δm

n it follows that

F 〈x〉τ =
∫ +∞

−∞
ψ̄(x, τ )Fxψ(x, τ ) dx

=
∞∑

n,m=1

∫ +∞

−∞

∫
B

∫
B

ām(k′, τ )dn(k, τ )ϕ̄m(k′, x)ϕn(k, x) dk dk′ dx

=
∞∑

n=1

∫
B

ān(k, τ )dn(k, τ ) dk

= g(τ) +
∞∑

n=1

∫
B

[En(k) − En(k − τ)]
∣∣a0

n(k − τ)
∣∣2

dk

= g(0) +
∞∑

n=1

∫
B

[En(k + τ) − En(k)]
∣∣a0

n(k)
∣∣2

dk

where the term

g(τ) =
∞∑

n=1

iF
∫
B

ā 0
n (k − τ)

∂a0
n(k − τ)

∂k
dk

=
∞∑

n=1

iF
∫
B

ā 0
n (k)

∂a0
n(k)

∂k
dk = g(0)

is independent of time and, from the previous equation, it coincides with F 〈x〉0. Hence (15)
follows.

In order to compute the variance Sτ = 〈[x − 〈x〉τ ]2〉τ = 〈x2〉τ − [〈x〉τ ]2 we make use of
the above equation where, assuming that the function a0 is real-valued, we obtain that

F 2〈x2〉τ = 〈Fxψ,Fxψ〉

=
〈 ∞∑

m=1

∫
B

dm(k′, τ )ϕm(k′, x) dk′,
∞∑

n=1

∫
B

dn(k, τ )ϕn(k, x) dk

〉

=
∞∑

n=1

∫
B

|dn(k, τ )|2 dk

=
∞∑

n=1

∫
B

|dn(k + τ, τ )|2 dk
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=
∞∑

n=1

∫
B

∣∣∣∣iF ∂a0
n(k)

∂k
+ [En(k + τ) − En(k)] a0

n(k)

∣∣∣∣
2

dk

= F 2〈x2〉0 +
∞∑

n=1

∫
B

[En(k + τ) − En(k)]2
∣∣a0

n(k)
∣∣2

dk

where

〈x2〉0 =
∞∑

n=1

∫
B

∣∣∣∣∂a0
n(k)

∂k

∣∣∣∣
2

dk

proving so equation (16).
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